The code builder file:///home/coul/builder.html

The code builder

1 Objectives

Monday 7 June 2010
by FJ

A muti-platform tool able to build up the libraries and the executable programs of a
software written in C, C++ and/or FORTRAN.

The main idea consists in simplifying the task of a developer when compiling and linking his
program. The usual tool for that is “make”, possibly associated to “automake” and
“autoconf”, but its use is not obvious as far as FORTRAN is concerned. Indeed, the module
files are not easy to manage and tools like “sfmakedepend” are often applied to generate
dependencies.

But "make” has other drawbacks :

e many versions of make exist which are not compatible together, except for the
simplest use. Moreover, if constructing a set of makefiles working on a unique platform
is relatively easy, managing several development platforms with various operating
systems is much more complicated.

e tests on files are applied on the time stamp only. This is a problem with FORTRAN
modules, when a change of the source file does not really modify the generated module.
The module time stamp is updated (except with few compilers) which often implies a
cascade of useless compilations. When a compiler does not change the module time
stamp, then the “"make” program is itself in trouble if this module file has been defined
as a target depending on the source file.

So the new proposed tool has the following objectives :

e Using together the file date and a file signature to determine whether or not a file has
been modified since the last build. This function needs to save the current build state in
a specific file, in the build directory.

e Recompiling a source file also when compiling options have been modified.

e Making possible to build the software several times with several compilers or
operating systems, within a particular build directory for each case, all parameters
being managed in a single configuration file which replaces the usual makefile(s). This
function is very important because most of FORTRAN developers use several compiler
suites.

e Managing correctly FORTRAN modules as well as include files.

e Introducing global tasks which make useless to check cross file dependencies when
these files belong to or are generated by other tasks : a task is associated to its own
set of files and then its own internal dependency list. The developer supplies the cross
file dependency check in defining himself the dependencies between the tasks.

e Handling file suffixes and file names in an operating system independent way, even if
it will remain possible to test the current operating system and to select specific
actions for it.

e Platform options like file suffixes, compiler flags, OS names... are managed by small
configuration blocks within the single configuration file.

e All source files are referenced relatively to the root directory of the software. On the

10f13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

contrary, produced files are referenced relatively to the building directory.

e Parallel compilation of source files, which are not related together, is managed
automatically. This parallel processing occurs only within a task, the tasks being
executed sequentially.

2 Installing and using the builder

W ednesday 9 June 2010
by FJ

Windows

%builder%s [-h] [-v] [-d project-directory] [-f configuration-file] [-p pname pvalue]
[platform-name]

Linux
builder [-h] [-v] [-d project-directory] [-f configuration-file] [-p pname pvalue]
[platform-name]

-h short user manual

-v verbose mode : the builder explains why it compiles source files

to precise the root directory of the project. By default, this is the current
directory

to provide the name of the configuration file. By default, the name is builder.cfg
and that file is located in the root directory of the project

-p passing a parameter (name and value) which can be used in the configuration file

Windows

The builder program is presently delivered under a self installing executable program :
builder-win32.exe

It should work on most of Windows versions : 95-98-2000-NT-XP-VISTA
During the installation, two environment variables are defined :

e the variable odessa contains the root directory of the installation,
e the variable builder contains the command to run.

The builder must be used in a command windows usually created by the program cmd.exe.
The builder command must than be written %builder% because builder is an environment
variable.

Linux

The Linux version is installed in deflating the archive file in any directory :

cd /../test
tar zxvf builder.tar.gz

It is advised to define an alias in the shell configuration file. For instance in .bashrc :

| alias builder="/../test/odessa/proc/builder"

3 Configuration file

20f 13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

Monday 7 June 2010
by FJ

Function

The configuration file describes the project and how to build up the associated libraries and
executable programs. It replaces the usual makefile(s). Rather than several files (one
makefile by source directory for instance), I have chosen to centralize the whole project
description in a single file. In fact, the configuration file may be split into several files, a
subject which will be explained later on.

This file is written in the ODESSA reader format, even if an equivalent XML form is
possible. The ODESSA format is easier to write than XML:

e jtis written in free format and the order of data does not matter,

e jtis mainly composed of couples (name,value),

e the data are organized in rubrics, a rubric starting by the keyword STRUCTURE and
finishing by the keyword END

Be careful about the string management of ODESSA :

e a name is a short string (up to 8 characters), starting by a letter and composed of
letters or digits (special characters $ # are also considered as letters),

e a short string containing non alphanumerical characters must be surrounded by
apostrophes. For instance '.f90' is a correct short string representing a usual
FORTRAN file suffix.

e a long string (more than 8 characters) must be delimited by quotation marks. For
instance "-03 -openmp" is a correct value for compiling options.

Let us also notice that a comment starts by the character ! like in FORTRAN.

Before executing the tasks described in that file, the builder checks carefully the
configuration file and stops immediately if an anomaly is detected.

The configuration file is usually saved in the root directory of the project. All file names are
relative to the root directory of the project. Its standard name is “builder.cfg” but any file
name is possible thanks to the option -f followed by the right configuration file name.

The configuration file contains two mains types of rubrics :

e PLATFORM : set of options for a specific installation platform merging together the
operating system and the compiler suite. The options are for instance the compiler
names, the compilation flags... A platform block has a name, this name being mention
as argument to the build command. So a unique PLATFORM block is always selected
when running the code builder. If the name is missing, then the first platform is
automatically selected.

e TASK : particular task possibly grouping together sub-tasks. A task may have task
dependencies. If a task contains source files, then a kind of makefile is constructed
automatically, involving local sources files and all generated files (objects and/or
modules).

A third type of rubric is also possible to manage exceptions. The name is EXCEPT. An
except rubric enables to choose specific compiling options for a particular source file on a
particular platform.

Simple example

Let us consider a project associated to a single source directory containing a mixing of
FORTRAN and C source files. A single task is enough to generate the executable program :

3o0f13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

40f 13

STRUCTURE TASK
NAME mycode
PROGRAM mycode

task name
main target : the executable program

DIR src the directory containing sources
SUFFIX '.f' the suffixes of the files to compile
SUFFIX '.c'
SUFFIX '.f90'

END

STRUCTURE PLATFORM | description of a first platform

NAME "unix-intel"
BUILD "bin/unix-intel"
OBJ '.o' MOD '.mod'
LIB '.a' EXE '' DYN '.so'
STRUCTURE COMPILER
SUFFIX '.f90' SUFFIX '.f'
COMMAND "ifort"
FLAGS "-03 -openmp"

compiler description
source file suffixes
command

compilation flags

NOLINK "-c" the special flags preventing the link phase
ouT "-0" the flag to precise the name of the main output file
INC e the flag to precise directories for includes and modules
MOD "-module" the flag to precise the directory receiving modules
END

STRUCTURE COMPILER
SUFFIX '.c' SUFFIX '.cc'

compiler for C files
source file suffixes

|
!
COMMAND "icc" I command
FLAGS "-03" I compilation flags
NOLINK "-c" I the special flag preventing the link phase
ouT "-0" I the flag to precise the name of the main output file
END

STRUCTURE PROGRAM
COMMAND "ifort"

the linker
command to use.

ouT "-o" the flag to precise the program file
FLAGS "-openmp" optimizations flags
END

END

In this example, only one platform is defined. This one describes two compilers and sets up
their main parameters.

A single task is foreseen : creating the executable program (file name : bin/linux-
intel/builder). This task involves to compile first the source files of the directory src. Two
types of source files are selected : FORTRAN and C.

[*-> DEPEND cO
[*-> DEPFILE c0/t

possible TASK dependency (name of another task)
external file dependency

4 TASK
Tuesday 8 June 2010
by FJ
*-> TASK
[-> BUILD t ! optional build path, relative to the root build
directory
[*-> COND s ! conditional block
*.> IF i0 ! condition
-> ... ! any information of the TASK block
[*-> DIR t ! directory path to locate source files
]
1

10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

[*-> DIRDEP cO/t
[*-> DIROB] cO/t
[*-> INST t
[*-> FILENAME t

! directory where looking for dependencies
! directory where looking for object files
! instructions to execute
! specific files to compile
[*-> LIBRARY c0O/t ! name of a library needed to make the program
[*-> DYNLIB c0/t ! name of a dynamic library needed to make the program
[-> LIBNAME c0O/t ! name of the library to create
[-> DYNNAME c0O/t ! name of the dynamic library to create
-> NAME co/t ! the name of the task
[-> PROGRAM c0/t ! name of the executable program
[*-> SUFFIX c0/t ! suffixes of source files to compile
[*-> TARGET t ! target file associated to instructions
[*-> TASK s ! sub task executed before compiling task source files
=> ...

Several rules apply :

e If a task contains in the same time sources files and sub-tasks, the sub-tasks are
executed first.

e Data DIR and SUFFIX are connected together.

e Data PROGRAM and LIBRARY are connected together. More precisely, a datum
LIBRARY is only used when creating an executable program.

e Data TARGET and INST are associated together.

How to compile source files

STRUCTURE TASK NAME compile
DIR "source/tooll" SUFFIX '.f90' SUFFIX '.c'
BUILD "obj"

END

All the source files of the directory “source/tooll” with a suffix .f90 of .c will be compiled.
The object files will be stored in the sub-directory “obj” of the building directory of the
chosen platform.

It is also possible to compile several files giving their name :

STRUCTURE TASK NAME compile2
FILENAME "source/tooll/f1.f90"
FILENAME "source/tool2/bis.f90"
FILENAME "source/tool3/foo.c"
BUILD "obj"

END

It is also possible to mix the two examples. The final list of source files is composed of the
files found using (DIR,SUFFIX) plus the files (FILENAME).

If a file is mentioned twice, then only one version is retained.
Cross dependencies between all these source files are computed automatically.

Building a library

STRUCTURE TASK NAME lib LIBNAME mylib
DIR "source/tooll" SUFFIX '.c' SUFFIX '.f90'
FILENAME "source/tool2/f1.f90"
BUILD "obj"

END

50f13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

This is exactly like a task compiling files, in inserting in addition the keyword LIBNAME
followed by the library name. It is possible to create a dynamic library in the same way, in
replacing LIBNAME by DYNNAME.

A dynamic library is called a DLL on Windows and a SO (Shared O bject) on Unix

Building an executable program

STRUCTURE TASK NAME link PROGRAM mycode
DIR "source/tooll" SUFFIX '.c' SUFFIX '.f90'
FILENAME "source/tool2/fl.f90"
BUILD "obj" LIBRARY 1libl LIBRARY 1lib2

END

Again, such task looks like a compilation task with two new elements :

e the keyword PROGRAM followed by the program name,
e the keyword LIBRARY followed by the name of the static library to link with,
e the keyword DYNLIB followed by the name of the dynamic library to link with.

Local object files are also linked with the mentioned libraries to build up the executable
program.

Executing operating system dependent instructions

STRUCTURE TASK
#begin INST
mkdir bin/Tlnux
cp source/tool.f bin/linux/save.f
#end
END

Such a task may be associated to a target and to dependencies. It is even possible to
selected instruction blocks dependent on the operating system. This is one of the subjects
of the article "How to”.

Task dependencies

A simple project may be associated to a single task : building up the executable program
from source files. But a complex project often involves several tasks, like building
intermediate libraries and creating several executable program...

A configuration file may contain as many tasks as necessary and a task may be shared into
several sub-tasks.

The tasks at the same level may have dependencies together. The developer is responsible
of them.

Usually, a correct initial build does means that the configuration file has no mistake, even if
some needed dependencies have been omitted.

Example :

STRUCTURE TASK NAME 1ibl

DIR srcl SUFFIX '.f90' LIBNAME libl
END
STRUCTURE TASK NAME 1ib2

DIR src2 SUFFIX '.f90' LIBNAME 1lib2
END

6 of 13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

At the first build, the library lib1l will be constructed first, just because it is mentioned first
in the configuration file. But let us suppose that source files of mylib2 depend on modules
generated when building up lib1.

The “normal” configuration file should be :

STRUCTURE TASK NAME 1ibl
DIR srcl SUFFIX '.f90' LIBNAME libl
END
STRUCTURE TASK NAME 1ib2 DEPEND libl
DIR src2 SUFFIX '.f90' LIBNAME 1lib2
END

Hopefully, even if the explicit dependency is not provided here, the modification of a critical
source file of the task libl will induce automatically :

e the compilation of that modified source, file,
e the compilation of sources files of libl and lib2 using the generated module files.

Indeed, the builder takes into account, file by file, of all dependencies, not only those
manages by the current task.

Such an implicit dependency, induced by the ordering of tasks in the configuration file, is
only valid because the tasks are always computed sequentially. With a // task processing,
such a technique would fail, critical files of lib2 being than possibly treated before
recompiling modified files of lib1.

This is the reason why parallel processing is possible only within the current task, when
compiling sources files of that task.

5 PLATFORM
Tuesday 8 June 2010
by FJ
*-.> PLATFORM s general options associated to an 0S and a set of compilers
-> BUILD co|t directory receiving constructed files

*.> COMPILER
-> COMMAND cO|t
-> FLAGS cO|t

compiler description
compiler command
compiler flag

-> 0UT co|t flag introducing the object file name
-> INC co|t flag followed by an include directory
-> MOD co|t flags followed by the directory receiving modules
-> SUFFIX (O suffixes of the source files compiled with that compiler
*-> DIRDEP co|t external dependency directory
-> DYN co suffix of a dynamic library (.dll or .so depdending on the
operating system)
-> DYNLIB how to build up a dynamic library

main command
possible flags

-> COMMAND cO|t
-> FLAGS cO|t

-> 0UT co|t flag introducing the library name
-> DYNPRE cO prefix of a dynamic library (' ' of 'lib')
-> EXE c0 executable suffix
-> LIB cO library suffix
-> LIBPRE cO library prefix
-> LIBRARY archive description

main command
possible flags
flag introducing the library name

-> COMMAND cO|t
-> FLAGS cO|t
-> OUT 0|t

7 of 13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

-> NAME co|t platform name
-> MOD c0 module suffix
-> 0BJ c0 object suffix
-> PROGRAM linker

main command
various flags
the flags introducing the program file name

-> COMMAND cO|t
-> FLAGS cO|t
-> OUT 0|t

The PLATFORM rubric enables to define parameters independent to the project himself but
essential for the build phase :

e operating system dependent parameters
e compiler parameters

A platform has a name possibly mention in the builder launching command. So it is
authorized to define as many platforms as necessary in a configuration file. By default, the
first platform is used.

Example :

STRUCTURE PLATFORM

NAME "unix-intel"

BUILD "bin/unix-intel"

0BJ '.o' MOD '.mod'

LIB '.a' EXE '' LIBPRE '' DYN '.so' DYNPRE ' '

STRUCTURE COMPILER compiler description
SUFFIX '.f90' SUFFIX '.f' source file suffixes
COMMAND "ifort" command
FLAGS "-03 -openmp" compilation flags

NOLINK "-c" the special flags suppressing the link phase
ouT "-o" the flag to precise the name of the main output file
INC t-I the flag to precise directories for includes and modules
MOD "-module" the flag to precise the directory receiving modules
END

STRUCTURE COMPILER
SUFFIX '.c' SUFFIX '.cc'
COMMAND "icc"

compiler for C files
source file suffixes
command

FLAGS "-03" compilation flags
NOLINK "-c" the special flag preventing the link phase
ouT "-o" the flag to precise the name of the main output file
END
STRUCTURE LIBRARY I librarian tools
COMMAND "ar"
FLAGS "t
ouT "
END
STRUCTURE DYNLIB I for a dynamic library
COMMAND "ifort"
FLAGS "-shared"
ouT "-o"
END

STRUCTURE PROGRAM
COMMAND "ifort"

the linker
command to use.

ouT "-o" the flag to precise the program file
FLAGS "-openmp" optimizations flags
END

END

8of 13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

6 EXCEPT

W ednesday 9 June 2010

by FJ

*-> EXCEPT
*-> FILENAME cO|t ! particular filenames
-> FLAGS cO|t ! compilation flags
-> PLATFORM cO|t ! platform name

It is sometimes necessary to manage specific compilation options for one or several files
on a given platform.

Example :

STRUCTURE EXCEPT
PLATFORM "linux-intel"
FILENAME "src/odessa graphics.f90"

FLAGS "-00" ! because of a compiler trouble with the options -03 -openmp
END
7 How to

W ednesday 9 June 2010
by FJ

The ODESSA data reader authorizes many operations which may be useful for an
experienced user

Introducing parameters in the configuration file

The ODESSA data reader is connected to another ODESSA tool called Analyzer. This
analyzeris itself a true programming language with many operators.

The coupling reader/analyzer is managed by small instructions between parentheses. When
the reader meets a string between parentheses, it calls the analyzer to execute this short
instruction. Such an instruction may have a result or not.

Example :

(debug="'-g")

STRUCTURE COMPILER
NAME ifort
FLAGS (debug)

END

STRUCTURE COMPILER
NAME icc
FLAGS (debug)

END

The first analyzer analyzer instruction is (debug='-g'). This instruction has no direct result
for the reader which sees nothing but the analyzer creates a variable named debug and
having the value -g".

The second analyzer instruction is (debug). The analyzer just return the value of the

90f 13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

variable debug, i.e. the string '-g’.

The analyzer is a rather complicated language but, in the framework of builder configuration
files, only few operators must be known :

= creation of a variable. For instance : (a=3)
extracting something from a composed object
// merging two strings

== comparison operatoras in FORTRAN or C

<> comparison operator like /=in FORTRAN and !'=in C
AND logical operator equivalent to .AND.in FORTRAN and && in C
OR logical operator equivalent to .OR.in FORTRAN

DELIMITE ‘/"on UNIX-like systems and "\'’on Windows

GETENV to get an environment variable

Of course, arithmetic operators + - / * are also available as well as mathematical operators
like ** SIN COS TAN EXP LOG... but their interest is very limited here.

Defining a parameter from command line

Rather than initializing the variable debug in the configuration file, it is possible to do it via
the command line :

| builder -p debug '-g'

The configuration file must be modified as follows :

| (IF(1-ASSIGNED('debug')) debug="' ")

It means that the parameter debug is initialized to ' ' by the configuration file only if its is
not already defined via the command line.

In the predefined platforms, several parameters may be defined via the builder command :

FC : Fortran compiler

CC : C compiler

FFLAGS :Fortran compiling flags
CFLAGS : C compiling flags
LDFLAGS : link flags

How to re-use platform blocks prepared for another project
The ODESSA data reader offers several possibilities :

e it accept the keyword CALL followed by a file name. This command includes that file
into the configuration file.
e jtis possible to prepare parametrized platform blocks.

For instance, the ODESSA builder is delivered with predefined platforms : linux-intel,
linux-gcc, linux-g95, linux-nag, windows-intel, windows-gcc, windows-g95, windows-nag.
These platforms have been parametrized :

e the platform name,
e predefined flags for the compilers and the linker : fflags, cflags, Idflags

For instance, if you want to load the platforms linux-intel and linux-gcc under two variants,
debug and optimized versions, then the configuration file could be :

10 of 13 10/28/2010 09:46 AM

The code builder

11 of 13

file:///home/coul/builder.html

STRUCTURE TASK ... END
(debug = '-g')
CALL linux-intel.cfg

(debug="' ")
CALL linux-intel.cfg

(debug="'-g")
CALL linux-gcc.cfg

(debug="' ")
CALL linux-gcc.cfg

Let us notice that a same file may be included several times.

It is even possible to group together all the platforms into a single file and to call that file in
your configuration file : look into the file odessa/dat/platforms.cfg.

The configuration file becomes :

CALL platforms.cfg
STRUCTURE TASK ... END

The ODESSA data reader always tries to open the include files locally. In case of failure, it
tries to open them from the ODESSA directory.

How to test operating system parameters when describing tasks

All has been done for avoiding specific platform or OS features in the description of tasks.
Unfortunately, all is not always enough !

So additional possibilities have been added which makes possible to select specific
features depending on the chosen platform.

The advised way

It is possible to use COND data blocks which contain a special datum named IF and
followed by a text (string between quotation marks). This text represents an instruction
which will be executed after the complete reading of the configuration file.

This short instruction has to return a logical result (true or false). If the condition is true,
then all the data within the the condition block become data the parent block, else they are
simply ignored.

To help the developer, the current platform is a datum which can be tested. Example :

10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

STRUCTURE TASK NAME "screen driver"
STRUCTURE COND
IF "platform:'NAME': 1 5 == 'linux'"
DIR "screen/x11"

END

STRUCTURE COND
IF "platform: 'NAME': 1 5 == 'windo"'"
DIR "screen\japi"

END

Two conditional blocks are described here. The first one selects data for a Linux platform
whereas the second one selects data for the Windows platform.

Such conditional block is not very flexible. For instance, it does not have a “else” counter
part.

About the conditional instructions :

e the first one is platform: 'NAME': 1 5 == 'linux'. The operator : has a high precedence
level and is executed before ==. The first : extracts the platform name whereas the
second : extracts from that name the substring composed of the 5 first characters. ==
compares that substring with the string linux’and return true or false.

e the second condition is very similar to the first one.

Let us notice that these instructions are executed by the ODESSA analyzer. They are not
between parentheses to avoid their execution during the reading phase.

Testing the directory path delimiter to know the type of operating system

This technique may be applied when reading the configuration file. The ODESSA data
reader has special keywords #ifthen #elseif #else and #endif to selected data under
condition.

STRUCTURE TASK NAME driver
#ifthen(DELIMITE == '/')
DIR "screen/x11"
#else
DIR "screen/japi"
#endif

END

Notice that the result is very similar to the one obtained by COND blocks. The main
difference is the timing, COND block being analyzed after the reading and also after a
check phase verifying that the configuration file has no mistake.

This kind of technique is used to install ODESSA itself (see the file odessa/dat/odessa.cfg)
Getting parameters of the current platform
It is even possible to go further in the way of the previous paragraph.

Let us assume that all the platforms are described before the tasks in the configuration file.
The builder argument is always passed to the data reader under the name argument. It is
therefore possible to get the associated platform rubric and to use the platform data as

12 of 13 10/28/2010 09:46 AM

The code builder file:///home/coul/builder.html

parameters when reading the tasks.

CALL platforms.all
I getting the platform rubric

#ifthen(argument == "")
(platform=GLOBAL: 'PLATFORM' 1)

#else
(platform=GLOBAL: 'PLATFORM' argument)

#endif

GLOBAL is the data base containing the data of the configuration file which have been read
up to now. The operator : extracts a piece of information from a data base.

After the previous sequence, it is possible to extract from the variable platform all the data
it contains. Forinstance, (platform:'0BJ]') is the string containing the suffix of an object file,
(platform: 'BUILD') is the building directory and (platform: 'NAME') is its name ...

13 0of 13 10/28/2010 09:46 AM

