
The code builder

1 Objectives

Monday 7 June 2010
by FJ

A muti-platform tool able to build up the libraries and the executable programs of a
software written in C, C++ and/or FORTRAN.

The main idea cons is ts in s implifying the task of a developer when compiling and linking his
program. The usual tool for that is “make”, poss ibly assoc iated to “automake” and
“autoconf”, but its use is not obvious as far as FO RTRA N is concerned. Indeed, the module
files are not easy to manage and tools like “s fmakedepend” are often applied to generate
dependenc ies .

But “make” has other drawbacks :

 many vers ions of make exis t which are not compatible together, except for the
s imples t use. Moreover, if cons truc ting a set of makefiles working on a unique platform
is relatively easy, managing several development platforms with various operating
sys tems is much more complicated.

 tes ts on files are applied on the time s tamp only. This is a problem with FO RTRA N
modules , when a change of the source file does not really modify the generated module.
The module time s tamp is updated (except with few compilers) which often implies a
cascade of useles s compilations . When a compiler does not change the module time
s tamp, then the “make” program is itself in trouble if this module file has been defined
as a target depending on the source file.

So the new proposed tool has the following objec tives :

 Us ing together the file date and a file s ignature to determine whether or not a file has
been modified s ince the las t build. This func tion needs to save the current build s tate in
a spec ific file, in the build direc tory.

 Recompiling a source file also when compiling options have been modified.

 Making poss ible to build the software several times with several compilers or
operating sys tems , within a particular build direc tory for each case, all parameters
being managed in a s ingle configuration file which replaces the usual makefile(s). This
func tion is very important because most of FO RTRA N developers use several compiler
suites .

 Managing correc tly FO RTRA N modules as well as inc lude files .

 Introduc ing global tasks which make useless to check c ross file dependenc ies when
these files belong to or are generated by other tasks : a task is assoc iated to its own
set of files and then its own internal dependency lis t. T he developer supplies the c ross
file dependency check in defining himself the dependenc ies between the tasks .

 Handling file suffixes and file names in an operating sys tem independent way, even if
it will remain poss ible to tes t the current operating sys tem and to selec t spec ific
ac tions for it.

 P latform options like file suffixes , compiler flags , O S names ... are managed by small
configuration blocks within the s ingle configuration file.

 A ll source files are referenced relatively to the root direc tory of the software. O n the

The code builder file:///home/coul/builder.html

1 of 13 10/28/2010 09:46 AM

contrary, produced files are referenced relatively to the building direc tory.

 P arallel compilation of source files , which are not related together, is managed
automatically. This parallel process ing occurs only within a task, the tasks being
executed sequentially.

2 Installing and using the builder

Wednesday 9 June 2010
by FJ

Windows

%builder% [-h] [-v] [-d project-directory] [-f configuration-file] [-p pname pvalue]
[platform-name]

Linux

builder [-h] [-v] [-d project-directory] [-f configuration-file] [-p pname pvalue]
[platform-name]

-h short user manual

-v verbose mode : the builder explains why it compiles source f iles

-d
to precise the root directory of the project. By default, this is the current
directory

-f
to provide the name of the conf iguration f ile. By default, the name is builder.cfg
and that f ile is located in the root directory of the project

-p passing a parameter (name and value) which can be used in the conf iguration f ile

Windows

The builder program is presently delivered under a self ins talling executable program :
builder-win32.exe

I t should work on most of Windows vers ions : 95-98-2000-NT-XP -V ISTA

During the ins tallation, two environment variables are defined :

 the variable odessa contains the root direc tory of the ins tallation,
 the variable builder contains the command to run.

The builder must be used in a command windows usually c reated by the program cmd.exe.
The builder command must than be written %builder% because builder is an environment
variable.

Linux

The Linux vers ion is ins talled in deflating the archive file in any direc tory :

cd /../test
tar zxvf builder.tar.gz

I t is advised to define an alias in the shell configuration file. For ins tance in .bashrc :

alias builder="/../test/odessa/proc/builder"

3 Configuration file

The code builder file:///home/coul/builder.html

2 of 13 10/28/2010 09:46 AM

Monday 7 June 2010
by FJ

Function

The configuration file desc ribes the projec t and how to build up the assoc iated libraries and
executable programs. I t replaces the usual makefile(s). Rather than several files (one
makefile by source direc tory for ins tance), I have chosen to centralize the whole projec t
desc ription in a s ingle file. In fac t, the configuration file may be split into several files , a
subjec t which will be explained later on.

This file is written in the O DESSA reader format, even if an equivalent XML form is
poss ible. The O DESSA format is eas ier to write than XML:

 it is written in free format and the order of data does not matter,
 it is mainly composed of couples (name,value),
 the data are organized in rubrics , a rubric s tarting by the keyword STRUCTURE and

finishing by the keyword END

Be careful about the s tring management of O DESSA :

 a name is a short s tring (up to 8 charac ters), s tarting by a letter and composed of
letters or digits (spec ial charac ters $ # _ are also cons idered as letters),

 a short s tring containing non alphanumerical charac ters must be surrounded by
apos trophes . For ins tance '.f90' is a correc t short s tring representing a usual
FO RTRA N file suffix.

 a long s tring (more than 8 charac ters) must be delimited by quotation marks . For
ins tance "-O3 -openmp" is a correc t value for compiling options .

Let us also notice that a comment s tarts by the charac ter ! like in FO RTRA N.

Before executing the tasks desc ribed in that file, the builder checks carefully the
configuration file and s tops immediately if an anomaly is detec ted.

The configuration file is usually saved in the root direc tory of the projec t. A ll file names are
relative to the root direc tory of the projec t. I ts s tandard name is “builder.c fg” but any file
name is poss ible thanks to the option -f followed by the right configuration file name.

The configuration file contains two mains types of rubrics :

 P LA TFO RM : set of options for a spec ific ins tallation platform merging together the
operating sys tem and the compiler suite. The options are for ins tance the compiler
names , the compilation flags ... A platform block has a name, this name being mention
as argument to the build command. So a unique P LA TFO RM block is always selec ted
when running the code builder. I f the name is miss ing, then the firs t platform is
automatically selec ted.

 TA SK : particular task poss ibly grouping together sub-tasks . A task may have task
dependenc ies . I f a task contains source files , then a kind of makefile is cons truc ted
automatically, involving local sources files and all generated files (objec ts and/or
modules).

A third type of rubric is also poss ible to manage exceptions . The name is EXC EPT . A n
except rubric enables to choose spec ific compiling options for a particular source file on a
particular platform.

Simple example

Let us cons ider a projec t assoc iated to a s ingle source direc tory containing a mixing of
FO RTRA N and C source files . A s ingle task is enough to generate the executable program :

The code builder file:///home/coul/builder.html

3 of 13 10/28/2010 09:46 AM

STRUCTURE TASK
 NAME mycode ! task name
 PROGRAM mycode ! main target : the executable program
 DIR src ! the directory containing sources
 SUFFIX '.f' ! the suffixes of the files to compile
 SUFFIX '.c'
 SUFFIX '.f90'
END

STRUCTURE PLATFORM ! description of a first platform
 NAME "unix-intel"
 BUILD "bin/unix-intel"
 OBJ '.o' MOD '.mod'
 LIB '.a' EXE '' DYN '.so'
 STRUCTURE COMPILER ! compiler description
 SUFFIX '.f90' SUFFIX '.f' ! source file suffixes
 COMMAND "ifort" ! command
 FLAGS "-O3 -openmp" ! compilation flags
 NOLINK "-c" ! the special flags preventing the link phase
 OUT "-o" ! the flag to precise the name of the main output file
 INC "-I" ! the flag to precise directories for includes and modules
 MOD "-module" ! the flag to precise the directory receiving modules
 END
 STRUCTURE COMPILER ! compiler for C files
 SUFFIX '.c' SUFFIX '.cc' ! source file suffixes
 COMMAND "icc" ! command
 FLAGS "-O3" ! compilation flags
 NOLINK "-c" ! the special flag preventing the link phase
 OUT "-o" ! the flag to precise the name of the main output file
 END
 STRUCTURE PROGRAM ! the linker
 COMMAND "ifort" ! command to use.
 OUT "-o" ! the flag to precise the program file
 FLAGS "-openmp" ! optimizations flags
 END
END

In this example, only one platform is defined. This one desc ribes two compilers and sets up
their main parameters .

A s ingle task is foreseen : c reating the executable program (file name : bin/linux-
intel/builder). This task involves to compile firs t the source files of the direc tory s rc . Two
types of source files are selec ted : FO RTRA N and C .

4 TASK

Tuesday 8 June 2010
by FJ

 *-> TASK
 [-> BUILD t ! optional build path, relative to the root build
directory
 [*-> COND s ! conditional block
 *-> IF i0 ! condition
 -> ... ! any information of the TASK block
 [*-> DIR t ! directory path to locate source files
 [*-> DEPEND c0 ! possible TASK dependency (name of another task)
 [*-> DEPFILE c0/t ! external file dependency

The code builder file:///home/coul/builder.html

4 of 13 10/28/2010 09:46 AM

 [*-> DIRDEP c0/t ! directory where looking for dependencies
 [*-> DIROBJ c0/t ! directory where looking for object files
 [*-> INST t ! instructions to execute
 [*-> FILENAME t ! specific files to compile
 [*-> LIBRARY c0/t ! name of a library needed to make the program
 [*-> DYNLIB c0/t ! name of a dynamic library needed to make the program
 [-> LIBNAME c0/t ! name of the library to create
 [-> DYNNAME c0/t ! name of the dynamic library to create
 -> NAME c0/t ! the name of the task
 [-> PROGRAM c0/t ! name of the executable program
 [*-> SUFFIX c0/t ! suffixes of source files to compile
 [*-> TARGET t ! target file associated to instructions
 [*-> TASK s ! sub task executed before compiling task source files
 -> ...

Several rules apply :

 I f a task contains in the same time sources files and sub-tasks , the sub-tasks are
executed firs t.

 Data DIR and SUFFIX are connec ted together.
 Data PRO GRA M and LIBRA RY are connec ted together. More prec isely, a datum

LIBRA RY is only used when c reating an executable program.
 Data TA RGET and INST are assoc iated together.

How to compile source f iles

STRUCTURE TASK NAME compile
 DIR "source/tool1" SUFFIX '.f90' SUFFIX '.c'
 BUILD "obj"
END

A ll the source files of the direc tory “source/tool1” with a suffix .f90 of .c will be compiled.
The objec t files will be s tored in the sub-direc tory “obj” of the building direc tory of the
chosen platform.

I t is also poss ible to compile several files giving their name :

STRUCTURE TASK NAME compile2
 FILENAME "source/tool1/f1.f90"
 FILENAME "source/tool2/bis.f90"
 FILENAME "source/tool3/foo.c"
 BUILD "obj"
END

I t is also poss ible to mix the two examples . The final lis t of source files is composed of the
files found us ing (DIR,SUFFIX) plus the files (FILENA ME).

I f a file is mentioned twice, then only one vers ion is retained.

C ross dependenc ies between all these source files are computed automatically.

Building a library

STRUCTURE TASK NAME lib LIBNAME mylib
 DIR "source/tool1" SUFFIX '.c' SUFFIX '.f90'
 FILENAME "source/tool2/f1.f90"
 BUILD "obj"
END

The code builder file:///home/coul/builder.html

5 of 13 10/28/2010 09:46 AM

This is exac tly like a task compiling files , in inserting in addition the keyword LIBNA ME
followed by the library name. I t is poss ible to c reate a dynamic library in the same way, in
replac ing LIBNA ME by DYNNA ME.

A dynamic library is called a DLL on Windows and a SO (Shared O bjec t) on Unix

Building an executable program

STRUCTURE TASK NAME link PROGRAM mycode
 DIR "source/tool1" SUFFIX '.c' SUFFIX '.f90'
 FILENAME "source/tool2/f1.f90"
 BUILD "obj" LIBRARY lib1 LIBRARY lib2
END

A gain, such task looks like a compilation task with two new elements :

 the keyword PRO GRA M followed by the program name,
 the keyword LIBRA RY followed by the name of the s tatic library to link with,
 the keyword DYNLIB followed by the name of the dynamic library to link with.

Local objec t files are also linked with the mentioned libraries to build up the executable
program.

Executing operating system dependent instructions

STRUCTURE TASK
 #begin INST
 mkdir bin/lnux
 cp source/tool.f bin/linux/save.f
 #end
END

Such a task may be assoc iated to a target and to dependenc ies . I t is even poss ible to
selec ted ins truc tion blocks dependent on the operating sys tem. This is one of the subjec ts
of the artic le “How to”.

Task dependencies

A s imple projec t may be assoc iated to a s ingle task : building up the executable program
from source files . But a complex projec t often involves several tasks , like building
intermediate libraries and c reating several executable program...

A configuration file may contain as many tasks as necessary and a task may be shared into
several sub-tasks .

The tasks at the same level may have dependenc ies together. The developer is respons ible
of them.

Usually, a correc t initial build does means that the configuration file has no mis take, even if
some needed dependenc ies have been omitted.

Example :

STRUCTURE TASK NAME lib1
 DIR src1 SUFFIX '.f90' LIBNAME lib1
END
STRUCTURE TASK NAME lib2
 DIR src2 SUFFIX '.f90' LIBNAME lib2
END

The code builder file:///home/coul/builder.html

6 of 13 10/28/2010 09:46 AM

A t the firs t build, the library lib1 will be cons truc ted firs t, jus t because it is mentioned firs t
in the configuration file. But let us suppose that source files of mylib2 depend on modules
generated when building up lib1 .

The “normal” configuration file should be :

STRUCTURE TASK NAME lib1
 DIR src1 SUFFIX '.f90' LIBNAME lib1
END
STRUCTURE TASK NAME lib2 DEPEND lib1
 DIR src2 SUFFIX '.f90' LIBNAME lib2
END

Hopefully, even if the explic it dependency is not provided here, the modific ation of a c ritical
source file of the task lib1 will induce automatically :

 the compilation of that modified source, file,
 the compilation of sources files of lib1 and lib2 us ing the generated module files .

Indeed, the builder takes into account, file by file, of all dependenc ies , not only those
manages by the current task.

Such an implic it dependency, induced by the ordering of tasks in the configuration file, is
only valid because the tasks are always computed sequentially. With a // task process ing,
such a technique would fail, c ritic al files of lib2 being than poss ibly treated before
recompiling modified files of lib1 .

This is the reason why parallel process ing is poss ible only within the current task, when
compiling sources files of that task.

5 PLATFORM

Tuesday 8 June 2010
by FJ

*-> PLATFORM s ! general options associated to an OS and a set of compilers
 -> BUILD c0|t ! directory receiving constructed files
 *-> COMPILER ! compiler description
 -> COMMAND c0|t ! compiler command
 -> FLAGS c0|t ! compiler flag
 -> OUT c0|t ! flag introducing the object file name
 -> INC c0|t ! flag followed by an include directory
 -> MOD c0|t ! flags followed by the directory receiving modules
 -> SUFFIX C0 ! suffixes of the source files compiled with that compiler
 *-> DIRDEP c0|t ! external dependency directory
 -> DYN c0 ! suffix of a dynamic library (.dll or .so depdending on the
operating system)
 -> DYNLIB ! how to build up a dynamic library
 -> COMMAND c0|t ! main command
 -> FLAGS c0|t ! possible flags
 -> OUT c0|t ! flag introducing the library name
 -> DYNPRE c0 ! prefix of a dynamic library (' ' of 'lib')
 -> EXE c0 ! executable suffix
 -> LIB c0 ! library suffix
 -> LIBPRE c0 ! library prefix
 -> LIBRARY ! archive description
 -> COMMAND c0|t ! main command
 -> FLAGS c0|t ! possible flags
 -> OUT c0|t ! flag introducing the library name

The code builder file:///home/coul/builder.html

7 of 13 10/28/2010 09:46 AM

 -> NAME c0|t ! platform name
 -> MOD c0 ! module suffix
 -> OBJ c0 ! object suffix
 -> PROGRAM ! linker
 -> COMMAND c0|t ! main command
 -> FLAGS c0|t ! various flags
 -> OUT c0|t ! the flags introducing the program file name

The P LA TFO RM rubric enables to define parameters independent to the projec t himself but
essential for the build phase :

 operating sys tem dependent parameters
 compiler parameters

A platform has a name poss ibly mention in the builder launching command. So it is
authorized to define as many platforms as necessary in a configuration file. By default, the
firs t platform is used.

Example :

STRUCTURE PLATFORM
 NAME "unix-intel"
 BUILD "bin/unix-intel"
 OBJ '.o' MOD '.mod'
 LIB '.a' EXE '' LIBPRE '' DYN '.so' DYNPRE ' '
 STRUCTURE COMPILER ! compiler description
 SUFFIX '.f90' SUFFIX '.f' ! source file suffixes
 COMMAND "ifort" ! command
 FLAGS "-O3 -openmp" ! compilation flags
 NOLINK "-c" ! the special flags suppressing the link phase
 OUT "-o" ! the flag to precise the name of the main output file
 INC "-I" ! the flag to precise directories for includes and modules
 MOD "-module" ! the flag to precise the directory receiving modules
 END
 STRUCTURE COMPILER ! compiler for C files
 SUFFIX '.c' SUFFIX '.cc' ! source file suffixes
 COMMAND "icc" ! command
 FLAGS "-O3" ! compilation flags
 NOLINK "-c" ! the special flag preventing the link phase
 OUT "-o" ! the flag to precise the name of the main output file
 END
 STRUCTURE LIBRARY ! librarian tools
 COMMAND "ar"
 FLAGS "r"
 OUT ""
 END
 STRUCTURE DYNLIB ! for a dynamic library
 COMMAND "ifort"
 FLAGS "-shared"
 OUT "-o"
 END
 STRUCTURE PROGRAM ! the linker
 COMMAND "ifort" ! command to use.
 OUT "-o" ! the flag to precise the program file
 FLAGS "-openmp" ! optimizations flags
 END
END

The code builder file:///home/coul/builder.html

8 of 13 10/28/2010 09:46 AM

6 EXCEPT

Wednesday 9 June 2010
by FJ

*-> EXCEPT
 *-> FILENAME c0|t ! particular filenames
 -> FLAGS c0|t ! compilation flags
 -> PLATFORM c0|t ! platform name

I t is sometimes necessary to manage spec ific compilation options for one or several files
on a given platform.

Example :

STRUCTURE EXCEPT
 PLATFORM "linux-intel"
 FILENAME "src/odessa_graphics.f90"
 FLAGS "-O0" ! because of a compiler trouble with the options -O3 -openmp
END

7 How to

Wednesday 9 June 2010
by FJ

The ODESSA data reader authorizes many operations which may be useful for an
experienced user

Introducing parameters in the conf iguration f ile

The O DESSA data reader is connec ted to another O DESSA tool called Analyzer. This
analyzer is itself a true programming language with many operators .

The coupling reader/analyzer is managed by small ins truc tions between parentheses . When
the reader meets a s tring between parentheses , it calls the analyzer to execute this short
ins truc tion. Such an ins truc tion may have a result or not.

Example :

(debug='-g')

STRUCTURE COMPILER
 NAME ifort
 FLAGS (debug)
 ...
END
STRUCTURE COMPILER
 NAME icc
 FLAGS (debug)
 ...
END

The firs t analyzer analyzer ins truc tion is (debug='-g'). This ins truc tion has no direc t result
for the reader which sees nothing but the analyzer c reates a variable named debug and
having the value ’-g’.

The second analyzer ins truc tion is (debug). The analyzer jus t return the value of the

The code builder file:///home/coul/builder.html

9 of 13 10/28/2010 09:46 AM

variable debug, i.e. the s tring ’-g’.

The analyzer is a rather complicated language but, in the framework of builder configuration
files , only few operators must be known :

= creation of a variable. For ins tance : (a=3)

: extrac ting something from a composed objec t

// merging two s trings

== comparison operator as in FO RTRA N or C

<> comparison operator like /= in FO RTRA N and != in C

A ND logical operator equivalent to .A ND. in FO RTRA N and && in C

O R logical operator equivalent to .O R. in FO RTRA N

DELIMITE ’/’ on UNIX-like sys tems and ’\’ on Windows

GETENV to get an environment variable

O f course, arithmetic operators + - / * are also available as well as mathematical operators
like ** SIN C O S TA N EXP LO G... but their interes t is very limited here.

Defining a parameter from command line

Rather than initializing the variable debug in the configuration file, it is poss ible to do it via
the command line :

builder -p debug '-g' ...

The configuration file must be modified as follows :

(IF(1-ASSIGNED('debug')) debug=' ')

I t means that the parameter debug is initialized to ’ ’ by the configuration file only if its is
not already defined via the command line.

In the predefined platforms, several parameters may be defined via the builder command :

 FC : Fortran compiler
 C C : C compiler
 FFLA GS :Fortran compiling flags
 C FLA GS : C compiling flags
 LDFLA GS : link flags

How to re-use platform blocks prepared for another project

The O DESSA data reader offers several poss ibilities :

 it accept the keyword C A LL followed by a file name. This command inc ludes that file
into the configuration file.

 it is poss ible to prepare parametrized platform blocks .

For ins tance, the O DESSA builder is delivered with predefined platforms : linux-intel,
linux-gcc , linux-g95, linux-nag, windows-intel, windows-gcc , windows-g95, windows-nag.
These platforms have been parametrized :

 the platform name,
 predefined flags for the compilers and the linker : fflags , c flags , ldflags

For ins tance, if you want to load the platforms linux-intel and linux-gcc under two variants ,
debug and optimized vers ions , then the configuration file could be :

The code builder file:///home/coul/builder.html

10 of 13 10/28/2010 09:46 AM

STRUCTURE TASK ... END
...
(debug = '-g')
CALL linux-intel.cfg

(debug=' ')
CALL linux-intel.cfg

(debug='-g')
CALL linux-gcc.cfg

(debug=' ')
CALL linux-gcc.cfg

Let us notice that a same file may be inc luded several times .

I t is even poss ible to group together all the platforms into a s ingle file and to call that file in
your configuration file : look into the file odessa/dat/platforms.c fg.

The configuration file becomes :

CALL platforms.cfg
STRUCTURE TASK ... END
..

The O DESSA data reader always tries to open the inc lude files locally. In case of failure, it
tries to open them from the O DESSA direc tory.

How to test operating system parameters when describing tasks

A ll has been done for avoiding spec ific platform or O S features in the desc ription of tasks .
Unfortunately, all is not always enough !

So additional poss ibilities have been added which makes poss ible to selec t spec ific
features depending on the chosen platform.

The advised way

I t is poss ible to use C O ND data blocks which contain a spec ial datum named IF and
followed by a text (s tring between quotation marks). T his text represents an ins truc tion
which will be executed after the complete reading of the configuration file.

This short ins truc tion has to return a logical result (true or false). I f the condition is true,
then all the data within the the condition block become data the parent block, else they are
s imply ignored.

To help the developer, the current platform is a datum which can be tes ted. Example :

The code builder file:///home/coul/builder.html

11 of 13 10/28/2010 09:46 AM

STRUCTURE TASK NAME "screen_driver"
 STRUCTURE COND
 IF "platform:'NAME': 1 5 == 'linux'"
 DIR "screen/x11"
 ...
 END
 STRUCTURE COND
 IF "platform:'NAME': 1 5 == 'windo'"
 DIR "screen\japi"
 ...
 END
 ...

Two conditional blocks are desc ribed here. The firs t one selec ts data for a Linux platform
whereas the second one selec ts data for the Windows platform.

Such conditional block is not very flexible. For ins tance, it does not have a “else” counter
part.

A bout the conditional ins truc tions :

 the firs t one is platform:'NAME': 1 5 == 'linux'. The operator : has a high precedence
level and is executed before ==. The firs t : extrac ts the platform name whereas the
second : extrac ts from that name the subs tring composed of the 5 firs t charac ters . ==
compares that subs tring with the s tring ’linux’ and return true or false.

 the second condition is very s imilar to the firs t one.

Let us notice that these ins truc tions are executed by the O DESSA analyzer. They are not
between parentheses to avoid their execution during the reading phase.

Testing the directory path delimiter to know the type of operating system

This technique may be applied when reading the configuration file. The O DESSA data
reader has spec ial keywords #ifthen #elseif #else and #endif to selec ted data under
condition.

STRUCTURE TASK NAME driver
 #ifthen(DELIMITE == '/')
 DIR "screen/x11"
 ...
 #else
 DIR "screen/japi"
 ...
 #endif
 ...
END

Notice that the result is very s imilar to the one obtained by C O ND blocks . The main
difference is the timing, C O ND block being analyzed after the reading and also after a
check phase verifying that the configuration file has no mis take.

This kind of technique is used to ins tall O DESSA itself (see the file odessa/dat/odessa.c fg)

Getting parameters of the current platform

I t is even poss ible to go further in the way of the previous paragraph.

Let us assume that all the platforms are desc ribed before the tasks in the c onfiguration file.
The builder argument is always passed to the data reader under the name argument. I t is
therefore poss ible to get the assoc iated platform rubric and to use the platform data as

The code builder file:///home/coul/builder.html

12 of 13 10/28/2010 09:46 AM

parameters when reading the tasks .

CALL platforms.all

! getting the platform rubric

#ifthen(argument == "")
 (platform=GLOBAL:'PLATFORM' 1)
#else
 (platform=GLOBAL:'PLATFORM' argument)
#endif

GLO BA L is the data base containing the data of the configuration file which have been read
up to now. The operator : extrac ts a piece of information from a data base.

A fter the previous sequence, it is poss ible to extrac t from the variable platform all the data
it contains . For ins tance, (platform:'OBJ') is the s tring containing the suffix of an objec t file,
(platform:'BUILD') is the building direc tory and (platform:'NAME') is its name ...

The code builder file:///home/coul/builder.html

13 of 13 10/28/2010 09:46 AM

